enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Much research has been done to solve uncertainty quantification problems, though a majority of them deal with uncertainty propagation. During the past one to two decades, a number of approaches for inverse uncertainty quantification problems have also been developed and have proved to be useful for most small- to medium-scale problems.

  3. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [1] for an idealized simple pendulum is, approximately,

  4. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    The measure precision at k, for example, is a measure of precision looking only at the top ten (k=10) search results. More sophisticated metrics, such as discounted cumulative gain , take into account each individual ranking, and are more commonly used where this is important.

  5. Uncertainty - Wikipedia

    en.wikipedia.org/wiki/Uncertainty

    Quantitative uses of the terms uncertainty and risk are fairly consistent among fields such as probability theory, actuarial science, and information theory. Some also create new terms without substantially changing the definitions of uncertainty or risk. For example, surprisal is a variation on uncertainty sometimes used in information theory ...

  6. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.

  7. Measurement uncertainty - Wikipedia

    en.wikipedia.org/wiki/Measurement_uncertainty

    In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.

  8. Design of experiments - Wikipedia

    en.wikipedia.org/wiki/Design_of_experiments

    Blocking reduces known but irrelevant sources of variation between units and thus allows greater precision in the estimation of the source of variation under study. Orthogonality Example of orthogonal factorial design Orthogonality concerns the forms of comparison (contrasts) that can be legitimately and efficiently carried out.

  9. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...