Search results
Results from the WOW.Com Content Network
OCD – Offshore and coastal dispersion model (OCD) is a Gaussian model developed to determine the impact of offshore emissions from point, area or line sources on the air quality of coastal regions. It incorporates overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline.
The dispersion models vary depending on the mathematics used to develop the model, but all require the input of data that may include: Meteorological conditions such as wind speed and direction, the amount of atmospheric turbulence (as characterized by what is called the "stability class" ), the ambient air temperature, the height to the bottom ...
The goal of diffusion models is to learn a diffusion process for a given dataset, such that the process can generate new elements that are distributed similarly as the original dataset. A diffusion model models data as generated by a diffusion process, whereby a new datum performs a random walk with drift through the space of all possible data. [2]
Many other models have been developed to work with MODFLOW input and output, making linked models which simulate several hydrologic processes possible (flow and transport models, surface water and groundwater models and chemical reaction models), because of the simple, well documented nature of MODFLOW.
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
In particular, experiments on the diffusion of foreign material in a turbulent water stream, [6] vertical structure of water in lake bodies, [7] and lowest part of the atmosphere [8] found experimental evidence that eddy diffusion is indeed stronger than molecular diffusion and generally obeys the theory originally developed by G. I. Taylor ...