enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: = ⁡ If the force is variable, then work is given by the line integral:

  3. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  4. Work (electric field) - Wikipedia

    en.wikipedia.org/wiki/Work_(electric_field)

    The work per unit of charge is defined as the movement of negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by generators, (electrochemical cells) or thermocouples generating an electromotive force.

  5. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    Work done by conservative forces does not depend on the path followed by the object, but only the end points, as the above equation shows. The gradient theorem also has an interesting converse: any path-independent vector field can be expressed as the gradient of a scalar field. Just like the gradient theorem itself, this converse has many ...

  6. Power-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Power-to-weight_ratio

    The work done from time t to time t + Δt along the path C is defined as the line integral = + (), so the fundamental theorem of calculus has that power is given by () = () = (). where: a ( t ) = d d t v ( t ) {\displaystyle \mathbf {a} (t)={\frac {d}{dt}}\mathbf {v} (t)\;} is acceleration of the center of mass of the body, changing with time.

  7. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] In terms of SI base units, one joule corresponds to one kilogram-square metre per square second (1 J = 1 kg⋅m 2 ⋅s −2).

  8. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  9. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.