Search results
Results from the WOW.Com Content Network
Other names in common use include glutathione synthetase, and GSH synthetase. This enzyme participates in glutamate metabolism and glutathione metabolism . At least one compound, Phosphinate is known to inhibit this enzyme .
This reaction is the rate-limiting step in glutathione synthesis. [3] Second, glycine is added to the C-terminal of γ-glutamylcysteine. This condensation is catalyzed by glutathione synthetase. While all animal cells are capable of synthesizing glutathione, glutathione synthesis in the liver has been shown to be essential.
A second GSH molecule reduces the GS-SeR intermediate back to the selenol, releasing GS-SG as the by-product. A simplified representation is shown below: [5] RSeH + H 2 O 2 → RSeOH + H 2 O RSeOH + GSH → GS-SeR + H 2 O GS-SeR + GSH → GS-SG + RSeH. Glutathione reductase then reduces the oxidized glutathione to complete the cycle:
Glutamate–cysteine ligase (GCL) EC 6.3.2.2), previously known as γ-glutamylcysteine synthetase (GCS), is the first enzyme of the cellular glutathione (GSH) biosynthetic pathway that catalyzes the chemical reaction:
The synthesis of O-acetylserine is catalyzed by serine acetyltransferase and together with O-acetylserine (thiol)lyase it is associated as enzyme complex named cysteine synthase. The formation of cysteine is the direct coupling step between sulfur ( sulfur metabolism ) and nitrogen assimilation in plants.
Glutathione reductase (GR) also known as glutathione-disulfide reductase (GSR) is an enzyme that in humans is encoded by the GSR gene.Glutathione reductase (EC 1.8.1.7) catalyzes the reduction of glutathione disulfide to the sulfhydryl form glutathione (), which is a critical molecule in resisting oxidative stress and maintaining the reducing environment of the cell.
Each precursor material is examined using the same method. This procedure is repeated until simple or commercially available structures are reached. These simpler/commercially available compounds can be used to form a synthesis of the target molecule. Retrosynthetic analysis was used as early as 1917 in Robinson's Tropinone total synthesis. [1]
Chemical structure of phytochelatin. n = 2–11. Phytochelatins are oligomers of glutathione, produced by the enzyme phytochelatin synthase. They are found in plants, fungi, nematodes and all groups of algae including cyanobacteria. Phytochelatins act as chelators, and are important for heavy metal detoxification.