Search results
Results from the WOW.Com Content Network
The C++ language makes wide use of iterators in its Standard Library and describes several categories of iterators differing in the repertoire of operations they allow. These include forward iterators, bidirectional iterators, and random access iterators, in order of increasing possibilities. All of the standard container template types provide ...
The erase–remove idiom cannot be used for containers that return const_iterator (e.g.: set) [6] std::remove and/or std::remove_if do not maintain elements that are removed (unlike std::partition, std::stable_partition). Thus, erase–remove can only be used with containers holding elements with full value semantics without incurring resource ...
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
There are several loopholes to pure const-correctness in C and C++. They exist primarily for compatibility with existing code. The first, which applies only to C++, is the use of const_cast, which allows the programmer to strip the const qualifier, making any object modifiable. The necessity of stripping the qualifier arises when using existing ...
For example, a vector would have a random-access iterator, but a list only a bidirectional iterator. Iterators are the major feature that allow the generality of the STL. For example, an algorithm to reverse a sequence can be implemented using bidirectional iterators, and then the same implementation can be used on lists, vectors and deques.
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop.All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
setcontext is one of a family of C library functions (the others being getcontext, makecontext and swapcontext) used for context control. The setcontext family allows the implementation in C of advanced control flow patterns such as iterators, fibers, and coroutines.
Consequently, references and iterators to elements after the insertion point become invalidated. [8] C++ vectors do not support in-place reallocation of memory, by design; i.e., upon reallocation of a vector, the memory it held will always be copied to a new block of memory using its elements' copy constructor, and then released.