enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    While naive Bayes often fails to produce a good estimate for the correct class probabilities, [16] this may not be a requirement for many applications. For example, the naive Bayes classifier will make the correct MAP decision rule classification so long as the correct class is predicted as more probable than any other class. This is true ...

  3. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g ...

  4. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  5. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    However, this loss function is non-convex and non-smooth, and solving for the optimal solution is an NP-hard combinatorial optimization problem. [4] As a result, it is better to substitute loss function surrogates which are tractable for commonly used learning algorithms, as they have convenient properties such as being convex and smooth.

  6. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Standard examples of each, all of which are linear classifiers, are: generative classifiers: naive Bayes classifier and; linear discriminant analysis; discriminative model: logistic regression; In application to classification, one wishes to go from an observation x to a label y (or probability distribution on labels).

  7. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    A Bayes estimator derived through the empirical Bayes method is called an empirical Bayes estimator. Empirical Bayes methods enable the use of auxiliary empirical data, from observations of related parameters, in the development of a Bayes estimator. This is done under the assumption that the estimated parameters are obtained from a common prior.

  8. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    Empirical risk minimization for a classification problem with a 0-1 loss function is known to be an NP-hard problem even for a relatively simple class of functions such as linear classifiers. [5] Nevertheless, it can be solved efficiently when the minimal empirical risk is zero, i.e., data is linearly separable .

  9. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    The softmax function is used in various multiclass classification methods, such as multinomial logistic regression (also known as softmax regression), [2]: 206–209 [6] multiclass linear discriminant analysis, naive Bayes classifiers, and artificial neural networks. [7]

  1. Related searches naive bayes example problem solving of logarithmic growth rate worksheet

    logarithmic growth microbiologylogarithmic growth wikipedia
    logarithmic growth in mathlogarithmic growth formula