Search results
Results from the WOW.Com Content Network
In statistics, Cook's distance or Cook's D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. [1] In a practical ordinary least squares analysis, Cook's distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it ...
This is an important technique in the detection of outliers. ... Python, etc., include implementations ... Cook's distance – a measure of changes in regression ...
Specifically, for some matrix , the squared Mahalanobis distance of (where is row of ) from the vector of mean ^ = = of length , is () = (^) (^), where = is the estimated covariance matrix of 's. This is related to the leverage h i i {\displaystyle h_{ii}} of the hat matrix of X {\displaystyle \mathbf {X} } after appending a column vector of 1 ...
Various methods have been proposed for measuring influence. [3] [4] Assume an estimated regression = +, where is an n×1 column vector for the response variable, is the n×k design matrix of explanatory variables (including a constant), is the n×1 residual vector, and is a k×1 vector of estimates of some population parameter .
Although the raw values resulting from the equations are different, Cook's distance and DFFITS are conceptually identical and there is a closed-form formula to convert one value to the other. [ 3 ] Development
The book has seven chapters. [1] [4] The first is introductory; it describes simple linear regression (in which there is only one independent variable), discusses the possibility of outliers that corrupt either the dependent or the independent variable, provides examples in which outliers produce misleading results, defines the breakdown point, and briefly introduces several methods for robust ...
The M in M-estimation stands for "maximum likelihood type". The method is robust to outliers in the response variable, but turned out not to be resistant to outliers in the explanatory variables (leverage points). In fact, when there are outliers in the explanatory variables, the method has no advantage over least squares.
The distance to the kth nearest neighbor can also be seen as a local density estimate and thus is also a popular outlier score in anomaly detection. The larger the distance to the k -NN, the lower the local density, the more likely the query point is an outlier. [ 24 ]