enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  3. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    In general, whenever we multiply both sides of an equation by an expression involving variables, we introduce extraneous solutions wherever that expression is equal to zero. But it is not sufficient to exclude these values, because they may have been legitimate solutions to the original equation.

  4. Resultant - Wikipedia

    en.wikipedia.org/wiki/Resultant

    However, as the roots may generally not be computed exactly, such an algorithm would be inefficient and numerically unstable. As the resultant is a symmetric function of the roots of each polynomial, it could also be computed by using the fundamental theorem of symmetric polynomials, but this would be highly inefficient.

  5. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    The ring of 2×2 matrices with integer entries does not satisfy the zero-product property: if = and = (), then = () = =, yet neither nor is zero. The ring of all functions f : [ 0 , 1 ] → R {\displaystyle f:[0,1]\to \mathbb {R} } , from the unit interval to the real numbers , has nontrivial zero divisors: there are pairs of functions which ...

  6. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    Likewise, tan ⁠ 3 π / 16 ⁠, tan ⁠ 7 π / 16 ⁠, tan ⁠ 11 π / 16 ⁠, and tan ⁠ 15 π / 16 ⁠ satisfy the irreducible polynomial x 4 − 4x 3 − 6x 2 + 4x + 1 = 0, and so are conjugate algebraic integers. This is the equivalent of angles which, when measured in degrees, have rational numbers. [2] Some but not all irrational ...

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    def f (x): return x ** 2-2 # f(x) = x^2 - 2 def f_prime (x): return 2 * x # f'(x) = 2x def newtons_method (x0, f, f_prime, tolerance, epsilon, max_iterations): """Newton's method Args: x0: The initial guess f: The function whose root we are trying to find f_prime: The derivative of the function tolerance: Stop when iterations change by less ...

  8. Zero to the power of zero - Wikipedia

    en.wikipedia.org/wiki/Zero_to_the_power_of_zero

    Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra , 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents .

  9. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    If (1 + z) 1/2 = 1 + a 1 z + a 2 z 2 + ⋯ is the binomial expansion for the square root (valid in |z| < 1), then as a formal power series its square equals 1 + z. Substituting N for z, only finitely many terms will be non-zero and S = √λ (I + a 1 N + a 2 N 2 + ⋯) gives a square root of the Jordan block with eigenvalue √λ.