Search results
Results from the WOW.Com Content Network
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
For univariate polynomials over the rationals (or more generally over a field of characteristic zero), Yun's algorithm exploits this to efficiently factorize the polynomial into square-free factors, that is, factors that are not a multiple of a square, performing a sequence of GCD computations starting with gcd(f(x), f '(x)). To factorize the ...
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
It follows that, to compute in a finite field of non prime order, one needs to generate an irreducible polynomial. For this, the common method is to take a polynomial at random and test it for irreducibility. For sake of efficiency of the multiplication in the field, it is usual to search for polynomials of the shape x n + ax + b. [citation ...
Consider the polynomial Q(x) = 3x 4 + 15x 2 + 10.In order for Eisenstein's criterion to apply for a prime number p it must divide both non-leading coefficients 15 and 10, which means only p = 5 could work, and indeed it does since 5 does not divide the leading coefficient 3, and its square 25 does not divide the constant coefficient 10.
Choosing a basis, the multiplication operator is represented by its coefficient matrix A, the companion matrix of ƒ(X) for this basis. Since every polynomial can be reduced modulo ƒ(X) to a polynomial of degree n − 1 or lower, the space of residue classes can be identified with the space of polynomials of degree bounded by n − 1.
where x is the variable, and a, b, and c represent the coefficients. Such polynomials often arise in a quadratic equation a x 2 + b x + c = 0. {\displaystyle ax^{2}+bx+c=0.} The solutions to this equation are called the roots and can be expressed in terms of the coefficients as the quadratic formula .