enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Hybrid orbitals are assumed to be mixtures of atomic orbitals, superimposed on each other in various proportions. For example, in methane, the C hybrid orbital which forms each carbon–hydrogen bond consists of 25% s character and 75% p character and is thus described as sp 3 (read as s-p-three) hybridised.

  3. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    These combinations are chosen to satisfy two conditions. First, the total amount of s and p orbital contributions must be equivalent before and after hybridisation. Second, the hybrid orbitals must be orthogonal to each other. [27] [28] If two hybrid orbitals were not orthogonal, by definition they would have nonzero orbital overlap. Electrons ...

  4. Allenes - Wikipedia

    en.wikipedia.org/wiki/Allenes

    The central carbon atom is sp-hybridized, and the two terminal carbon atoms are sp 2-hybridized. The bond angle formed by the three carbon atoms is 180°, indicating linear geometry for the central carbon atom. The two terminal carbon atoms are planar, and these planes are twisted 90° from each other.

  5. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Carbon and each oxygen atom will have a 2s atomic orbital and a 2p atomic orbital, where the p orbital is divided into p x, p y, and p z. With these derived atomic orbitals, symmetry labels are deduced with respect to rotation about the principal axis which generates a phase change, pi bond ( π ) [ 26 ] or generates no phase change, known as a ...

  6. Carbon–carbon bond - Wikipedia

    en.wikipedia.org/wiki/Carboncarbon_bond

    The carboncarbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp 3-hybridized orbitals, but single bonds formed between carbon atoms with other hybridizations do occur (e.g. sp 2 to sp 2). In fact, the carbon atoms in the single bond need not be of the ...

  7. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Hybridization is a model that describes how atomic orbitals combine to form new orbitals that better match the geometry of molecules. Atomic orbitals that are similar in energy combine to make hybrid orbitals. For example, the carbon in methane (CH 4) undergoes sp 3 hybridization to form four equivalent orbitals, resulting in a tetrahedral shape.

  8. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.

  9. Bent bond - Wikipedia

    en.wikipedia.org/wiki/Bent_bond

    In these compounds, it is not possible for the carbon atoms to assume the 109.5° bond angles with standard sp 3 hybridization. Increasing the p-character to sp 5 (i.e. 1 ⁄ 6 s-density and 5 ⁄ 6 p-density) [5] makes it possible to reduce the bond angles to 60°. At the same time, the carbon-to-hydrogen bonds gain more s-character, which ...