Search results
Results from the WOW.Com Content Network
Labeling can take place in all three orthogonal cut planes and results can be visualized as a three-dimensional rendering. This makes it easier to ensure that the segmentation maintains reasonable shape in 3D. Automatic segmentation ITK-SNAP provides automatic functionality segmentation using the level-set method. This makes it possible to ...
GrabCut is an image segmentation method based on graph cuts.. Starting with a user-specified bounding box around the object to be segmented, the algorithm estimates the color distribution of the target object and that of the background using a Gaussian mixture model.
Manual image annotation is the process of manually defining regions in an image and creating a textual description of those regions. Such annotations can for instance be used to train machine learning algorithms for computer vision applications. This is a list of computer software which can be used for manual annotation of images.
More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image (see edge detection).
A graph, containing vertices and connecting edges, is constructed from relevant input data. The vertices contain information required by the comparison heuristic, while the edges indicate connected 'neighbors'. An algorithm traverses the graph, labeling the vertices based on the connectivity and relative values of their neighbors.
ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning ...
Computer Vision Annotation Tool (CVAT) is an open source, web-based image and video annotation tool used for labeling data for computer vision algorithms. Originally developed by Intel , CVAT is designed for use by a professional data annotation team, with a user interface optimized for computer vision annotation tasks.
Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...