enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  3. Weil–Petersson metric - Wikipedia

    en.wikipedia.org/wiki/Weil–Petersson_metric

    If a point of Teichmüller space is represented by a Riemann surface R, then the cotangent space at that point can be identified with the space of quadratic differentials at R.

  4. Category:Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Riemannian_geometry

    In differential geometry, Riemannian geometry is the study of smooth manifolds with Riemannian metrics; i.e. a choice of positive-definite quadratic form on a manifold's tangent spaces which varies smoothly from point to point. This gives in particular local ideas of angle, length of curves, and volume.

  5. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  6. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  7. Luther P. Eisenhart - Wikipedia

    en.wikipedia.org/wiki/Luther_P._Eisenhart

    Riemannian Geometry (PDF). Princeton: Princeton University Press. OCLC 5836010. Eisenhart, Luther Pfahler (1939). Coordinate Geometry. Dover Publishing. [7] Eisenhart, Luther Pfahler (1927). Non-Riemannian geometry (PDF). New York: American Mathematical Society. [8] Eisenhart, Luther Pfahler (1909). A treatise on the differential geometry of ...

  8. Fundamental theorem of Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo-Riemannian manifold) there is a unique affine connection that is torsion-free and metric-compatible, called the Levi-Civita connection or (pseudo-) Riemannian connection of the given metric.

  9. Glossary of Riemannian and metric geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_Riemannian_and...

    Cartan connection. Cartan-Hadamard space is a complete, simply-connected, non-positively curved Riemannian manifold.. Cartan–Hadamard theorem is the statement that a connected, simply connected complete Riemannian manifold with non-positive sectional curvature is diffeomorphic to R n via the exponential map; for metric spaces, the statement that a connected, simply connected complete ...