enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iodine - Wikipedia

    en.wikipedia.org/wiki/Iodine

    This is an accepted version of this page This is the latest accepted revision, reviewed on 25 February 2025. This article is about the chemical element. For other uses, see Iodine (disambiguation). Chemical element with atomic number 53 (I) Iodine, 53 I Iodine Pronunciation / ˈ aɪ ə d aɪ n, - d ɪ n, - d iː n / (EYE -ə-dyne, -⁠din, -⁠deen) Appearance lustrous metallic gray solid ...

  3. Iodine compounds - Wikipedia

    en.wikipedia.org/wiki/Iodine_compounds

    Liquid iodine trichloride conducts electricity, possibly indicating dissociation to ICl + 2 and ICl − 4 ions. [9] Iodine pentafluoride (IF 5), a colourless, volatile liquid, is the most thermodynamically stable iodine fluoride, and can be made by reacting iodine with fluorine gas at room temperature. It is a fluorinating agent, but is mild ...

  4. Hydrogen iodide - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_iodide

    Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid.Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas.

  5. Iodide - Wikipedia

    en.wikipedia.org/wiki/Iodide

    Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt , which many governments mandate. Worldwide, iodine deficiency affects two billion people and is the leading preventable cause of intellectual disability .

  6. Molar ionization energies of the elements - Wikipedia

    en.wikipedia.org/wiki/Molar_ionization_energies...

    This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms. The second, third, etc., molar ionization energy applies to the further removal of an electron from a singly, doubly, etc., charged ion.

  7. Iodine-129 - Wikipedia

    en.wikipedia.org/wiki/Iodine-129

    129 I is one of the seven long-lived fission products that are produced in significant amounts. Its yield is 0.706% per fission of 235 U. [7] Larger proportions of other iodine isotopes such as 131 I are produced, but because these all have short half-lives, iodine in cooled spent nuclear fuel consists of about 5/6 129 I and 1/6 the only stable iodine isotope, 127 I.

  8. Iodine-131 - Wikipedia

    en.wikipedia.org/wiki/Iodine-131

    Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.

  9. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. The latter can be regarded as the ionization energy of the –1 ion or the zeroth ionization energy. [1]