Search results
Results from the WOW.Com Content Network
In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations.
The result, x 2, is a "better" approximation to the system's solution than x 1 and x 0. If exact arithmetic were to be used in this example instead of limited-precision, then the exact solution would theoretically have been reached after n = 2 iterations ( n being the order of the system).
Using low-degree polynomials over a finite field of size , it is possible to extend the definition of Reed–Muller codes to alphabets of size .Let and be positive integers, where should be thought of as larger than .
If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
Ie for DM is 301 % k is the size of the message % n is the total size (k+redundant) % Example: msg = uint8('Test') % enc_msg = rsEncoder(msg, 8, 301, 12, numel(msg)); % Get the alpha alpha = gf (2, m, prim_poly); % Get the Reed-Solomon generating polynomial g(x) g_x = genpoly (k, n, alpha); % Multiply the information by X^(n-k), or just pad ...
The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [ 1 ] [ 2 ] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors .
In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.