enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.

  3. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The logarithm is denoted "log b x" (pronounced as "the logarithm of x to base b", "the base-b logarithm of x", or most commonly "the log, base b, of x "). An equivalent and more succinct definition is that the function log b is the inverse function to the function x ↦ b x {\displaystyle x\mapsto b^{x}} .

  4. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  6. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: ⁡ = + ⁡ = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ⁡ ( x ⋅ y ) = ln ⁡ x + ln ⁡ y ...

  7. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ) distribution, then

  8. Logarithmic scale - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_scale

    A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...

  9. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    In mathematics, the common logarithm (aka "standard logarithm") is the logarithm with base 10. [1] It is also known as the decadic logarithm , the decimal logarithm and the Briggsian logarithm . The name "Briggsian logarithm" is in honor of the British mathematician Henry Briggs who conceived of and developed the values for the "common logarithm".