enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication.This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group.

  3. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Modern proof theory treats proofs as inductively defined data structures, not requiring an assumption that axioms are "true" in any sense. This allows parallel mathematical theories as formal models of a given intuitive concept, based on alternate sets of axioms, for example axiomatic set theory and non-Euclidean geometry.

  4. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    set is smaller than its power set; uncountability of the real numbers; Cantor's first uncountability proof. uncountability of the real numbers; Combinatorics; Combinatory logic; Co-NP; Coset; Countable. countability of a subset of a countable set (to do) Angle of parallelism; Galois group. Fundamental theorem of Galois theory (to do) Gödel number

  5. Structural induction - Wikipedia

    en.wikipedia.org/wiki/Structural_induction

    Structural recursion is usually proved correct by structural induction; in particularly easy cases, the inductive step is often left out. The length and ++ functions in the example below are structurally recursive. For example, if the structures are lists, one usually introduces the partial order "<", in which L < M whenever list L is the tail ...

  6. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    In the left hand sides of the following identities, L is the L eft most set and R is the R ight most set. Whenever necessary, both L and R should be assumed to be subsets of some universe set X , so that L ∁ := X ∖ L and R ∁ := X ∖ R . {\displaystyle L^{\complement }:=X\setminus L{\text{ and }}R^{\complement }:=X\setminus R.}

  7. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    Examples are the octonions and Lie algebras. In Lie algebras, the multiplication satisfies Jacobi identity instead of the associative law; this allows abstracting the algebraic nature of infinitesimal transformations. Other examples are quasigroup, quasifield, non-associative ring, and commutative non-associative magmas.

  8. Proof theory - Wikipedia

    en.wikipedia.org/wiki/Proof_theory

    Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

  9. List of data structures - Wikipedia

    en.wikipedia.org/wiki/List_of_data_structures

    This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.