Search results
Results from the WOW.Com Content Network
exchange proteins activated by cAMP (EPAC) [7] such as RAPGEF3; popeye domain containing proteins (Popdc) [8] an enzyme called protein kinase A (PKA). [9] The PKA enzyme is also known as cAMP-dependent enzyme because it gets activated only if cAMP is present. Once PKA is activated, it phosphorylates a number of other proteins including: [10]
Cyclic AMP is an important molecule in eukaryotic signal transduction, a so-called second messenger. Adenylyl cyclases are often activated or inhibited by G proteins, which are coupled to membrane receptors and thus can respond to hormonal or other stimuli. [11]
cAMP represented in three ways Adenosine triphosphate. Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms ...
The receptor changes conformation and transmits a signal that activates an enzyme in the cell membrane interior called adenylyl cyclase. This releases cAMP into the cell interior, where it stimulates a protein kinase called cyclic AMP-dependent protein kinase. By phosphorylating proteins, cyclic AMP-dependent protein kinase alters protein activity.
The activated Gs alpha subunit binds to and activates an enzyme called adenylyl cyclase, which, in turn, catalyzes the conversion of ATP into cyclic AMP (cAMP). cAMP binds to and activates protein kinase A (PKA). It is PKA, activated by a hormone-induced signal transduction cascade, that phosphorylates and activates hormone sensitive lipase ...
The signal to activate CRP is the binding of cyclic AMP. Binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP-binding domain to the C-terminal domain of the protein, which is responsible for interaction with specific sequences of DNA. [6]
This covalent addition of AMP to a hydroxyl side chain of the protein is a post-translational modification. [4] Adenylylation involves a phosphodiester bond between a hydroxyl group of the molecule undergoing adenylylation, and the phosphate group of the adenosine monophosphate nucleotide (i.e. adenylic acid).
Besides the myokinase reaction, a high ATP consumption and low ATP reservoir also increases protein catabolism and salvage of IMP, which results in increased AMP and IMP. These two nucleotides can then enter the purine nucleotide cycle to produce fumarate which will then produce ATP by oxidative phosphorylation.