Search results
Results from the WOW.Com Content Network
The equation describing the relative motion is known as the swing equation, which is a non-linear second order differential equation that describes the swing of the rotor of synchronous machine. The power exchange between the mechanical rotor and the electrical grid due to the rotor swing (acceleration and deceleration) is called Inertial response.
The finite point method (FPM) is a meshfree method for solving partial differential equations (PDEs) on scattered distributions of points. The FPM was proposed in the mid-nineties in (Oñate, Idelsohn, Zienkiewicz & Taylor, 1996a), [1] (Oñate, Idelsohn, Zienkiewicz, Taylor & Sacco, 1996b) [2] and (Oñate & Idelsohn, 1998a) [3] with the purpose to facilitate the solution of problems involving ...
The tautochrone problem is a special case of Abel's mechanical problem when () is a constant. Abel's solution begins with the principle of conservation of energy – since the particle is frictionless, and thus loses no energy to heat , its kinetic energy at any point is exactly equal to the difference in gravitational potential energy from its ...
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...
Application of Stefan problem to metal crystallization in electrochemical deposition of metal powders was envisaged by Călușaru [13] The Stefan problem also has a rich inverse theory; in such problems, the melting depth (or curve or hyper-surface) s is the known datum and the problem is to find u or f. [14]
The method removes secular terms—terms growing without bound—arising in the straightforward application of perturbation theory to weakly nonlinear problems with finite oscillatory solutions. [1] [2] The method is named after Henri Poincaré, [3] and Anders Lindstedt. [4]
The smaller mass, labelled m, is allowed to swing freely whereas the larger mass, M, can only move up and down. Assume the pivots to be points. The swinging Atwood's machine (SAM) is a mechanism that resembles a simple Atwood's machine except that one of the masses is allowed to swing in a two-dimensional plane, producing a dynamical system ...