Search results
Results from the WOW.Com Content Network
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
The lac operon of the model bacterium Escherichia coli was the first operon to be discovered and provides a typical example of operon function. It consists of three adjacent structural genes, a promoter, a terminator, and an operator. The lac operon is regulated by several factors including the availability of glucose and lactose.
The lac operon is used in the biotechnology industry for production of recombinant proteins for therapeutic use. The gene or genes for producing an exogenous protein are placed on a plasmid under the control of the lac promoter. Initially the cells are grown in a medium that does not contain lactose or other sugars, so the new genes are not ...
Monod joined the Pasteur Institute in 1943 and Jacob in 1949. The experimental system ultimately used by Jacob and Monod was a common bacterium, E. coli, but the basic regulatory concept (described in the Lac operon article) that was discovered by Jacob and Monod is fundamental to cellular regulation for all organisms.
Absence of glucose will "turn off" catabolite repression. When glucose levels are low, the phosphorylated form of EIIA accumulates and consequently activates the enzyme adenylyl cyclase, which will produce high levels of cAMP. cAMP binds to catabolite activator protein (CAP) and together they will bind to a promoter sequence on the lac operon ...
It is encoded by the lacY gene in the lac operon. The LacY gene is a component of the lac operon that encodes lactose permease, a protein responsible for breaking down lactose into glucose and galactose, alongside transacetylase and beta galactosidase.
The enzyme's role in the classical E.coli lac operon remains unclear. [1] [3] However, the enzyme's cellular role may be to detoxify non-metabolizable pyranosides by acetylating them and preventing their reentry into the cell. [1] [4]
The lac repressor (LacI) is a DNA-binding protein that inhibits the expression of genes coding for proteins involved in the metabolism of lactose in bacteria. These genes are repressed when lactose is not available to the cell, ensuring that the bacterium only invests energy in the production of machinery necessary for uptake and utilization of ...