enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Forecast skill - Wikipedia

    en.wikipedia.org/wiki/Forecast_skill

    A sample of predictions for a single predictand (e.g., temperature at one location, or a single stock value) typically includes forecasts made on a number of different dates. A sample could also pool forecast-observation pairs across space, for a prediction made on a single date, as in the forecast of a weather event that is verified at many ...

  3. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  4. Calibration (statistics) - Wikipedia

    en.wikipedia.org/wiki/Calibration_(statistics)

    In prediction and forecasting, a Brier score is sometimes used to assess prediction accuracy of a set of predictions, specifically that the magnitude of the assigned probabilities track the relative frequency of the observed outcomes. Philip E. Tetlock employs the term "calibration" in this sense in his 2015 book Superforecasting. [16]

  5. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".

  6. Scoring rule - Wikipedia

    en.wikipedia.org/wiki/Scoring_rule

    That is, a prediction of 80% that correctly proved true would receive a score of ln(0.8) = −0.22. This same prediction also assigns 20% likelihood to the opposite case, and so if the prediction proves false, it would receive a score based on the 20%: ln(0.2) = −1.6. The goal of a forecaster is to maximize the score and for the score to be ...

  7. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    In general, with a normally-distributed sample mean, Ẋ, and with a known value for the standard deviation, σ, a 100(1-α)% confidence interval for the true μ is formed by taking Ẋ ± e, with e = z 1-α/2 (σ/n 1/2), where z 1-α/2 is the 100(1-α/2)% cumulative value of the standard normal curve, and n is the number of data values in that ...

  8. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]