Ads
related to: calculus antiderivative rules and practice book download
Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Simplest rules Sum rule in integration; Constant factor rule in integration; Linearity of integration; Arbitrary constant of integration; Cavalieri's quadrature formula; Fundamental theorem of calculus; Integration by parts; Inverse chain rule method; Integration by substitution. Tangent half-angle substitution; Differentiation under the ...
the book is organized into the following chapters. i. real variables; ii. functions of real variables; iii. complex numbers; iv. limits of functions of a positive integral variable; v. limits of functions of a continuous variable. continuous and discontinuous functions; vi. derivatives and integrals; vii. additional theorems in the differential ...
These rules are given in many books, both on elementary and advanced calculus, in pure and applied mathematics. Those in this article (in addition to the above references) can be found in: Mathematical Handbook of Formulas and Tables (3rd edition), S. Lipschutz, M.R. Spiegel, J. Liu, Schaum's Outline Series, 2009, ISBN 978-0-07-154855-7.
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
Since and the inverse function : are continuous, they have antiderivatives by the fundamental theorem of calculus. Laisant proved that if F {\displaystyle F} is an antiderivative of f {\displaystyle f} , then the antiderivatives of f − 1 {\displaystyle f^{-1}} are:
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
Ads
related to: calculus antiderivative rules and practice book download