Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.
Another abbreviated method is polynomial short division (Blomqvist's method). Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R,
In arithmetic, long division is a standard division algorithm suitable for dividing multi-digit Hindu-Arabic numerals (positional notation) that is simple enough to perform by hand. It breaks down a division problem into a series of easier steps.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
The algorithm computing the subresultant sequence with pseudo-remainders is given below. In this algorithm, the input (a, b) is a pair of polynomials in Z[X]. The r i are the successive pseudo remainders in Z[X], the variables i and d i are non negative integers, and the Greek letters denote elements in Z.
For algorithms describing how to calculate the remainder, see division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder . [ 2 ] The integer a is either a multiple of d , or lies in the interval between consecutive multiples of d , namely, q⋅d and ( q + 1) d (for positive q ).
Trial division is the most laborious but easiest to understand of the integer factorization algorithms. The essential idea behind trial division tests to see if an integer n , the integer to be factored, can be divided by each number in turn that is less than or equal to the square root of n .