Search results
Results from the WOW.Com Content Network
Receptor-mediated endocytosis (RME), also called clathrin-mediated endocytosis, is a process by which cells absorb metabolites, hormones, proteins – and in some cases viruses – by the inward budding of the plasma membrane (invagination). This process forms vesicles containing the absorbed substances and is strictly mediated by receptors on ...
Clathrin-mediated endocytosis is mediated by the production of small (approx. 100 nm in diameter) vesicles that have a morphologically characteristic coat made up of the cytosolic protein clathrin. [4] Clathrin-coated vesicles (CCVs) are found in virtually all cells and form domains of the plasma membrane termed clathrin-coated pits.
AP-2 complex. The AP2 adaptor complex is a multimeric protein that works on the cell membrane to internalize cargo in clathrin-mediated endocytosis. [1] It is a stable complex of four adaptins which give rise to a structure that has a core domain and two appendage domains attached to the core domain by polypeptide linkers.
While clathrin-coated endocytosis is the most efficient and dominant means of cellular cargo entry, endocytic pathways can operate without the presence of the clathrin triskelion. In the absence of clathrin in a plasma membrane, there are many elements of response that allow for the internalization of essential molecules for cellular function.
Clathrin-mediated endocytosis (CME) regulates many cellular physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. It is believed that cellular invaders use the nutrient pathway to gain access to a cell's replicating mechanisms.
AP180 is a protein that plays an important role in clathrin-mediated endocytosis of synaptic vesicles.It is capable of simultaneously binding both membrane lipids (via an ANTH domain) and clathrin and is therefore thought to recruit clathrin to the membrane of newly invaginating vesicles.
During clathrin-mediated endocytosis, the cell membrane invaginates to form a budding vesicle. Dynamin binds to and assembles around the neck of the endocytic vesicle, forming a helical polymer arranged such that the GTPase domains dimerize in an asymmetric manner across helical rungs.
This mechanism may be a way around clathrin-mediated endocytosis. It is also proposed that the vesicle does not need to return to an endosome to refill, though it is not thoroughly understood by which mechanism it would refill. This does not exclude full vesicle fusion, but only states that both mechanisms may operate in synaptic clefts.