Search results
Results from the WOW.Com Content Network
Vitiligo (/ ˌ v ɪ t ɪ ˈ l aɪ ɡ oʊ /, vi-ti-leye-goh) is a chronic autoimmune disorder that causes patches of skin to lose pigment or color. [1] The cause of vitiligo is unknown, but it may be related to immune system changes, genetic factors, stress, or sun exposure. [5] [6] Treatment options include topical medications, light therapy ...
In immunology, autoimmunity is the system of immune responses of an organism against its own healthy cells, tissues and other normal body constituents. [1] [2] Any disease resulting from this type of immune response is termed an "autoimmune disease".
Prolonged hypoxia induces neuronal death via apoptosis. With a dysfunctional haemodynamic response, active neuronal tissue due to membrane depolarization lacks the necessary energy to propagate signals, as a result of blood flow hindrance. This affects many functions in the body, and may lead to severe symptoms.
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
Some genetic conditions that result in a "leucistic" appearance include piebaldism, Waardenburg syndrome, vitiligo, Chédiak–Higashi syndrome, flavism, isabellinism, xanthochromism, axanthism, amelanism, and melanophilin mutations. Pale patches of skin, feathers, or fur (often referred to as "depigmentation") can also result from injury.
Small vacuoles of fat accumulate and become dispersed within cytoplasm. Mild fatty change may have no effect on cell function; however, more severe fatty change can impair cellular function. In the liver, the enlargement of hepatocytes due to fatty change may compress adjacent bile canaliculi, leading to cholestasis. Depending on the cause and ...
In neuroscience, homeostatic plasticity refers to the capacity of neurons to regulate their own excitability relative to network activity. The term homeostatic plasticity derives from two opposing concepts: 'homeostatic' (a product of the Greek words for 'same' and 'state' or 'condition') and plasticity (or 'change'), thus homeostatic plasticity means "staying the same through change".
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes (salts in solution) in the various body fluids are kept within healthy ranges.