Search results
Results from the WOW.Com Content Network
The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful ) has multiplicity above 1 for all prime factors.
999 = 3 3 ×37, 1000 = 2 3 ×5 3, 1001 = 7×11×13. Factors p 0 = 1 may be inserted without changing the value of n (for example, 1000 = 2 3 ×3 0 ×5 3). In fact, any positive integer can be uniquely represented as an infinite product taken over all the positive prime numbers, as
For example, 4 can be partitioned in five distinct ways: 4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1. The only partition of zero is the empty sum, having no parts. The order-dependent composition 1 + 3 is the same partition as 3 + 1, and the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition as 2 + 1 + 1.
f has degree at most p − 2 (since the leading terms cancel), and modulo p also has the p − 1 roots 1, 2, ..., p − 1. But Lagrange's theorem says it cannot have more than p − 2 roots. Therefore, f must be identically zero (mod p), so its constant term is (p − 1)! + 1 ≡ 0 (mod p). This is Wilson's theorem.
Graph of the number of primes ending in 1, 3, 7, and 9 up to n for n < 10 000. Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.
Graph of x 3 + 2x 2 − 7x + 4 with a simple root (multiplicity 1) at x=−4 and a root of multiplicity 2 at x=1. The graph crosses the x axis at the simple root. It is tangent to the x axis at the multiple root and does not cross it, since the multiplicity is even.
The other terms also correspond to zeros: the dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see Riesel & Göhl (1970) or Zagier (1977) .
The other terms also correspond to zeros: The dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. This formula says that the zeros of the Riemann zeta function control the oscillations of primes around their "expected" positions.