Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
The expansion of the n th power uses the numbers n rows down from the top of the triangle. An application of the above formula for the square of a binomial is the "(m, n)-formula" for generating Pythagorean triples: For m < n, let a = n 2 − m 2, b = 2mn, and c = n 2 + m 2; then a 2 + b 2 = c 2.
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method. The word FOIL is an acronym for the four terms of the product: First ("first" terms of each binomial are multiplied together)
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
The syllabus covered is more in-depth as compared to Elementary Mathematics, with additional topics including Algebra binomial expansion, proofs in plane geometry, differential calculus and integral calculus. [2]