enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    In thermodynamics, the specific heat capacity (symbol c) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat. More formally it is the heat capacity of a sample of the substance ...

  3. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution ...

  4. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    Thus: The difference relation allows one to obtain the heat capacity for solids at constant volume which is not readily measured in terms of quantities that are more easily measured. The ratio relation allows one to express the isentropic compressibility in terms of the heat capacity ratio.

  5. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. [1] The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property. The corresponding intensive property is the specific heat capacity, found ...

  6. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    Thermal conductivity and resistivity. The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m −1 ·K −1. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.

  7. Material properties (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Material_properties...

    The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1-component system are: where P is pressure, V is volume, T is temperature, S is entropy, and N is the number of ...

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The law was actually the last of the laws to be formulated. First law of thermodynamics. d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where. d U {\displaystyle dU} is the infinitesimal increase in internal energy of the system, δ Q {\displaystyle \delta Q} is the infinitesimal heat flow into the system, and.

  9. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    Heat capacity ratio. In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (CP) to heat capacity at constant volume (CV). It is sometimes also known as the isentropic expansion factor and is ...