enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and. the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    As a consequence, a rank-k matrix can be written as the sum of k rank-1 matrices, but not fewer. The rank of a matrix plus the nullity of the matrix equals the number of columns of the matrix. (This is the rank–nullity theorem.) If A is a matrix over the real numbers then the rank of A and the rank of its corresponding Gram matrix are equal.

  4. Rank (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Rank_(graph_theory)

    Analogously, the nullity of the graph is the nullity of its oriented incidence matrix, given by the formula m − n + c, where n and c are as above and m is the number of edges in the graph. The nullity is equal to the first Betti number of the graph. The sum of the rank and the nullity is the number of edges.

  5. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The kernel of a m × n matrix A over a field K is a linear subspace of K n. That is, the kernel of A, the set Null(A), has the following three properties: Null(A) always contains the zero vector, since A0 = 0. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.

  6. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The column space of an m × n matrix with components from is a linear subspace of the m -space . The dimension of the column space is called the rank of the matrix and is at most min (m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly.

  7. Nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Nullity_theorem

    The nullity theorem is a mathematical theorem about the inverse of a partitioned matrix, which states that the nullity of a block in a matrix equals the nullity of the complementary block in its inverse matrix. Here, the nullity is the dimension of the kernel. The theorem was proven in an abstract setting by Gustafson (1984), and for matrices ...

  8. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of a graph in the mathematical subject of graph theory can mean either of two unrelated numbers. If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency matrix.

  9. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]