enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  3. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Gaussian elimination is a useful and easy way to compute the inverse of a matrix. To compute a matrix inverse using this method, an augmented matrix is first created with the left side being the matrix to invert and the right side being the identity matrix. Then, Gaussian elimination is used to convert the left side into the identity matrix ...

  4. Generalized inverse - Wikipedia

    en.wikipedia.org/wiki/Generalized_inverse

    Generalized inverse. In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element x is an element y that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for ...

  5. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    Sherman–Morrison formula. In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a " rank -1 update" to a matrix whose inverse has previously been computed. [1][2][3] That is, given an invertible matrix and the outer product of vectors and the formula cheaply computes an ...

  6. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Cramer's rule. In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one ...

  7. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    Inverse element. In mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x. (An identity element is an element ...

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Eigendecomposition of a matrix. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the ...

  9. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    Woodbury matrix identity. In mathematics (specifically linear algebra), the Woodbury matrix identity, named after Max A. Woodbury, [1][2] says that the inverse of a rank- k correction of some matrix can be computed by doing a rank- k correction to the inverse of the original matrix. Alternative names for this formula are the matrix inversion ...