Search results
Results from the WOW.Com Content Network
The SI unit is cubic metres per second (m 3 /s). Another unit used is standard cubic centimetres per minute (SCCM). In US customary units and imperial units, volumetric flow rate is often expressed as cubic feet per second (ft 3 /s) or gallons per minute (either US or imperial definitions).
The relationship between gallons per minute (gpm) and fixture unit is not constant, but varies with the number of fixture units. For example, 1000 FU is equivalent to 220 US gallons per minute (0.014 m 3 /s) while 2000 FU represents only 330 US gallons per minute (0.021 m 3 /s), about 1.5 times the flow rate.
The energy content of ethanol is 76,100 BTU/US gal (5.89 kilowatt-hours per litre), compared to 114,100 BTU/US gal (8.83 kWh/L) for gasoline. (see chart above) A flex-fuel vehicle will experience about 76% of the fuel mileage MPG when using E85 (85% ethanol) products as compared to 100% gasoline.
onlineflow.de, webpage Online calculator for conversion of volume, mass and molar flows (SCFM, MMSCFD, Nm3/hr, kg/s, kmol/hr and more) ACFM versus SCFM for ASME AG-1 HEPA Filters; SCFM (Standard CFM) vs. ACFM (Actual CFM) (Specifically for air flows only) "Standard conditions for gases" from the IUPAC Gold Book. "Standard pressure" from the ...
so that for incompressible, irrotational flow (=), the second term on the left in the Navier-Stokes equation is just the gradient of the dynamic pressure. In hydraulics , the term u 2 / 2 g {\displaystyle u^{2}/2g} is known as the hydraulic velocity head (h v ) so that the dynamic pressure is equal to ρ g h v {\displaystyle \rho gh_{v}} .
Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³ STP /min. Another expression of it would be Nml/min.
A hydrograph is a graph showing the rate of flow (discharge) versus time past a specific point in a river, channel, or conduit carrying flow. The rate of flow is typically expressed in units of cubic meters per second (m³/s) or cubic feet per second (cfs). Hydrographs often relate changes of precipitation to changes in discharge over time. [3]
The equation for head loss in pipes, also referred to as slope, S, expressed in "feet per foot of length" vs. in 'psi per foot of length' as described above, with the inside pipe diameter, d, being entered in feet vs. inches, and the flow rate, Q, being entered in cubic feet per second, cfs, vs. gallons per minute, gpm, appears very similar.