enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    The following polynomials in two variables X 1 and X 2 are symmetric: + + + + (+) as is the following polynomial in three variables X 1, X 2, X 3: . There are many ways to make specific symmetric polynomials in any number of variables (see the various types below).

  3. Cycle index - Wikipedia

    en.wikipedia.org/wiki/Cycle_index

    The cycle index polynomial of a permutation group is the average of the cycle index monomials of its elements. The phrase cycle indicator is also sometimes used in place of cycle index. Knowing the cycle index polynomial of a permutation group, one can enumerate equivalence classes due to the group's action.

  4. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.

  5. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    Galois' theory originated in the study of symmetric functions – the coefficients of a monic polynomial are (up to sign) the elementary symmetric polynomials in the roots. For instance, ( x – a )( x – b ) = x 2 – ( a + b ) x + ab , where 1, a + b and ab are the elementary polynomials of degree 0, 1 and 2 in two variables.

  6. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    A group is called virtually cyclic if it contains a cyclic subgroup of finite index (the number of cosets that the subgroup has). In other words, any element in a virtually cyclic group can be arrived at by multiplying a member of the cyclic subgroup and a member of a certain finite set. Every cyclic group is virtually cyclic, as is every ...

  7. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    The set of complete homogeneous symmetric polynomials of degree 1 to n in n variables generates the ring of symmetric polynomials in n variables. More specifically, the ring of symmetric polynomials with integer coefficients equals the integral polynomial ring

  8. Automorphisms of the symmetric and alternating groups

    en.wikipedia.org/wiki/Automorphisms_of_the...

    For every symmetric group other than S 6, there is no other conjugacy class consisting of elements of order 2 that has the same number of elements as the class of transpositions. Or as follows: Each permutation of order two (called an involution ) is a product of k > 0 disjoint transpositions, so that it has cyclic structure 2 k 1 n −2 k .

  9. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    A polynomial code of length is cyclic if and only if its generator polynomial divides Since g ( x ) {\displaystyle g(x)} is the minimal polynomial with roots α c , … , α c + d − 2 , {\displaystyle \alpha ^{c},\ldots ,\alpha ^{c+d-2},} it suffices to check that each of α c , … , α c + d − 2 {\displaystyle \alpha ^{c},\ldots ,\alpha ...

  1. Related searches cyclic vs symmetric polynomials examples problems free download windows 10

    what is symmetric polynomialsymmetric function examples
    symmetric polynomial formula