Search results
Results from the WOW.Com Content Network
In computer science, a substring index is a data structure which gives substring search in a text or text collection in sublinear time. Once constructed from a document or set of documents, a substring index can be used to locate all occurrences of a pattern in time linear or near-linear in the pattern size, with no dependence or only logarithmic dependence on the document size.
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both).. Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
A string is a substring (or factor) [1] of a string if there exists two strings and such that =.In particular, the empty string is a substring of every string. Example: The string = ana is equal to substrings (and subsequences) of = banana at two different offsets:
The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z. The set ret can be saved efficiently by just storing the index i, which is the last character of the longest common substring (of size z) instead of S[(i-z+1)..i].
Anselm Blumer with a drawing of generalized CDAWG for strings ababc and abcab. The concept of suffix automaton was introduced in 1983 [1] by a group of scientists from University of Denver and University of Colorado Boulder consisting of Anselm Blumer, Janet Blumer, Andrzej Ehrenfeucht, David Haussler and Ross McConnell, although similar concepts had earlier been studied alongside suffix trees ...
In computer science, an FM-index is a compressed full-text substring index based on the Burrows–Wheeler transform, with some similarities to the suffix array.It was created by Paolo Ferragina and Giovanni Manzini, [1] who describe it as an opportunistic data structure as it allows compression of the input text while still permitting fast substring queries.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
The languages C# 3.0 [5]: 367 and Oxygene declare them with the var keyword. In VB9.0, the Dim keyword without type declaration accomplishes the same. Such objects are still strongly typed ; for these objects the compiler infers the types of variables via type inference , which allows the results of the queries to be specified and defined ...