Search results
Results from the WOW.Com Content Network
Note that the final result of an insertion sort is optimum, i.e., a correctly sorted list. For many problems, online algorithms cannot match the performance of offline algorithms. If the ratio between the performance of an online algorithm and an optimal offline algorithm is bounded, the online algorithm is called competitive. [1]
Sorting small arrays optimally (in the fewest comparisons and swaps) or fast (i.e. taking into account machine-specific details) is still an open research problem, with solutions only known for very small arrays (<20 elements). Similarly optimal (by various definitions) sorting on a parallel machine is an open research topic.
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
Gnome sort (nicknamed stupid sort) is a variation of the insertion sort sorting algorithm that does not use nested loops. Gnome sort was originally proposed by Iranian computer scientist Hamid Sarbazi-Azad (professor of Computer Science and Engineering at Sharif University of Technology) [1] in 2000.
Merge-insertion sort performs the following steps, on an input of elements: [6]. Group the elements of into ⌊ / ⌋ pairs of elements, arbitrarily, leaving one element unpaired if there is an odd number of elements.
Bubble sort. The list was plotted in a Cartesian coordinate system, with each point (x, y) indicating that the value y is stored at index x. Then the list would be sorted by bubble sort according to every pixel's value. Note that the largest end gets sorted first, with smaller elements taking longer to move to their correct positions.
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
Comb sort is a relatively simple sorting algorithm originally designed by Włodzimierz Dobosiewicz and Artur Borowy in 1980, [1] [2] later rediscovered (and given the name "Combsort") by Stephen Lacey and Richard Box in 1991. [3]