enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Artin's conjecture on primitive roots - Wikipedia

    en.wikipedia.org/wiki/Artin's_conjecture_on...

    Without the generalized Riemann hypothesis, there is no single value of a for which Artin's conjecture is proved. D. R. Heath-Brown proved in 1986 (Corollary 1) that at least one of 2, 3, or 5 is a primitive root modulo infinitely many primes p. [3] He also proved (Corollary 2) that there are at most two primes for which Artin's conjecture fails.

  3. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  4. Artin conjecture - Wikipedia

    en.wikipedia.org/wiki/Artin_conjecture

    Artin's conjecture on primitive roots; The (now proved) conjecture that finite fields are quasi-algebraically closed; see Chevalley–Warning theorem; The (now disproved) conjecture that any algebraic form over the p-adics of degree d in more than d 2 variables represents zero: that is, that all p-adic fields are C 2; see Ax–Kochen theorem or ...

  5. Talk:Artin's conjecture on primitive roots - Wikipedia

    en.wikipedia.org/wiki/Talk:Artin's_conjecture_on...

    Also, the current version states that it suffices to prove Artin's conjecture for prime numbers a; I don't believe this is correct. Even if we knew that 2 and 3 were both primitive roots modulo infinitely many primes (even the "right" density of primes), I don't think there's any way to conclude that 6 is a primitive root modulo infinitely many ...

  6. Canon arithmeticus - Wikipedia

    en.wikipedia.org/wiki/Canon_arithmeticus

    Jacobi's original tables use 10 or −10 or a number with a small power of this form as the primitive root whenever possible, while the second edition uses the smallest possible positive primitive root (Fletcher 1958). The term "canon arithmeticus" is occasionally used to mean any table of indices and powers of primitive roots.

  7. Full reptend prime - Wikipedia

    en.wikipedia.org/wiki/Full_reptend_prime

    This sequence is the set of primes p such that 10 is a primitive root modulo p. Artin's conjecture on primitive roots is that this sequence contains 37.395...% of the primes. Binary full reptend primes

  8. List of conjectures by Paul Erdős - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures_by_Paul...

    The Erdős–Turán conjecture on additive bases of natural numbers. A conjecture on quickly growing integer sequences with rational reciprocal series. A conjecture with Norman Oler [2] on circle packing in an equilateral triangle with a number of circles one less than a triangular number. The minimum overlap problem to estimate the limit of M(n).

  9. Cubic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Cubic_reciprocity

    Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x 3 ≡ p (mod q) is solvable if and only if ...