Search results
Results from the WOW.Com Content Network
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics.
The laws of physics are the same for all observers in any inertial frame of reference relative to one another (principle of relativity). The speed of light in vacuum is the same for all observers, regardless of their relative motion or of the motion of the light source. The resultant theory copes with experiment better than classical mechanics.
In Einstein's theory and related theories of gravitation, curvature at every point in spacetime is also caused by whatever matter is present. Here, too, mass is a key property in determining the gravitational influence of matter. But in a relativistic theory of gravity, mass cannot be the only source of gravity.
By definition, an affine connection is a bilinear map () (), where () is a space of all vector fields on the spacetime. This bilinear map can be described in terms of a set of connection coefficients (also known as Christoffel symbols ) specifying what happens to components of basis vectors under infinitesimal parallel transport: ∇ e i e j ...
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c.
Tests of general relativity serve to establish observational evidence for the theory of general relativity.The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift.
In Einstein's theory of general relativity, the Schwarzschild metric (also Schwarzschild vacuum or Schwarzschild solution), is a solution to the Einstein field equations which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, the angular momentum of the mass, and the universal ...
For gravitation, the relationship between Newton's theory of gravity and general relativity is governed by the correspondence principle: General relativity must produce the same results as gravity does for the cases where Newtonian physics has been shown to be accurate.