Search results
Results from the WOW.Com Content Network
Multivariate Kernel Smoothing and Its Applications is a comprehensive book on many topics in kernel smoothing, including density estimation. Includes ks package code snippets in R. kde2d.m A Matlab function for bivariate kernel density estimation. libagf A C++ library for multivariate, variable bandwidth kernel density estimation.
Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., multivariate random variables. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to ...
Multiple factor analysis (MFA) is a factorial method [1] devoted to the study of tables in which a group of individuals is described by a set of variables (quantitative and / or qualitative) structured in groups. It is a multivariate method from the field of ordination used to simplify multidimensional data structures. MFA treats all involved ...
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
The multivariate least squares (MLS) ... Time Series Analysis. Python: The statsmodels package's tsa (time series analysis) module supports VARs.
The Wishart distribution arises as the distribution of the sample covariance matrix for a sample from a multivariate normal distribution. It occurs frequently in likelihood-ratio tests in multivariate statistical analysis. It also arises in the spectral theory of random matrices [citation needed] and in multidimensional Bayesian analysis. [5]
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]
Permutational multivariate analysis of variance (PERMANOVA), [1] is a non-parametric multivariate statistical permutation test. PERMANOVA is used to compare groups of objects and test the null hypothesis that the centroids and dispersion of the groups as defined by measure space are equivalent for all groups. A rejection of the null hypothesis ...