Search results
Results from the WOW.Com Content Network
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial ordering being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection.
One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p. The other is the quaternion group for p = 2 and a group of exponent p for p > 2. Order p 4: The classification is complicated, and gets much harder as the exponent of p increases.
In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups: in the study of finite groups, a Z-group is a finite group whose Sylow subgroups are all cyclic. in the study of infinite groups, a Z-group is a group which possesses a very general form of central series.
The principal congruence subgroup of level 2, Γ(2), is also called the modular group Λ. Since PSL(2, Z/2Z) is isomorphic to S 3, Λ is a subgroup of index 6. The group Λ consists of all modular transformations for which a and d are odd and b and c are even.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
Γ is a discrete countable torsion-free subgroup of G. In this case the fundamental group is Γ and the universal covering space G/K is actually contractible (by the Cartan decomposition for Lie groups). As an example take G = SL(2, R), K = SO(2) and Γ any torsion-free congruence subgroup of the modular group SL(2, Z).
In mathematics, in the realm of group theory, the term complemented group is used in two distinct, but similar ways. In , a complemented group is one in which every subgroup has a group-theoretic complement. Such groups are called completely factorizable groups in the Russian literature, following and (Černikov 1953).
Furthermore, the center of G is always an abelian and normal subgroup of G. Since all elements of Z(G) commute, it is closed under conjugation. A group homomorphism f : G → H might not restrict to a homomorphism between their centers. The image elements f (g) commute with the image f ( G), but they need not commute with all of H unless f is ...