enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Majority function - Wikipedia

    en.wikipedia.org/wiki/Majority_function

    The few systems that calculate the majority function on an even number of inputs are often biased towards "0" – they produce "0" when exactly half the inputs are 0 – for example, a 4-input majority gate has a 0 output only when two or more 0's appear at its inputs. [1] In a few systems, the tie can be broken randomly. [2]

  3. Direct-coupled transistor logic - Wikipedia

    en.wikipedia.org/wiki/Direct-coupled_transistor...

    An AND gate requires two or more inputs that are true for there to be an outcome. As an example, let's say that 1 and 2 are true and 0 is false the only way for there to be an output is for the input to contain either 1,2, or both [clarify]. [7] If any of the inputs are 0, there will be no output. All inputs must be true for there to be an ...

  4. AND gate - Wikipedia

    en.wikipedia.org/wiki/AND_gate

    The AND gate is a basic digital logic gate that implements the logical conjunction (∧) from mathematical logic – AND gates behave according to their truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If all of the inputs to the AND gate are not HIGH, a LOW (0) is outputted.

  5. Triple modular redundancy - Wikipedia

    en.wikipedia.org/wiki/Triple_modular_redundancy

    The 3-input majority gate output is 1 if two or more of the inputs of the majority gate are 1; output is 0 if two or more of the majority gate's inputs are 0. Thus, the majority gate is the carry output of a full adder, i.e., the majority gate is a voting machine. [7] The 3-input majority gate can be represented by the following boolean ...

  6. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  7. Quantum dot cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_cellular_automaton

    Figure 5 shows a majority gate with three inputs and one output. In this structure, the electrical field effect of each input on the output is identical and additive, with the result that whichever input state ("binary 0" or "binary 1") is in the majority becomes the state of the output cell — hence the gate's name.

  8. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear. [ 1 ] Modern activation functions include the logistic ( sigmoid ) function used in the 2012 speech recognition model developed by Hinton et al; [ 2 ] the ReLU used in the 2012 AlexNet computer vision model [ 3 ] [ 4 ] and in the 2015 ResNet model ...

  9. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    The perceptron learning rule originates from the Hebbian assumption, and was used by Frank Rosenblatt in his perceptron in 1958. The net is passed to the activation function and the function's output is used for adjusting the weights. The learning signal is the difference between the desired response and the actual response of a neuron.