Search results
Results from the WOW.Com Content Network
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres )". Lange indirectly defines the values to be standard atmosphere of "1 atm (101325 Pa)", although citing the same NBS and JANAF sources among others.
The classical equipartition theorem predicts that the heat capacity ratio (γ) for an ideal gas can be related to the thermally accessible degrees of freedom (f) of a molecule by = +, =. Thus we observe that for a monatomic gas, with 3 translational degrees of freedom per atom: γ = 5 3 = 1.6666 … , {\displaystyle \gamma ={\frac {5}{3}}=1. ...
These two values are usually denoted by and , respectively; their quotient = / is the heat capacity ratio. The term specific heat may also refer to the ratio between the specific heat capacities of a substance at a given temperature and of a reference substance at a reference temperature, such as water at 15 °C; [5] much in the fashion of ...
This is a table of specific heat capacities by magnitude. ... Argon: 677 Glass: 720 Graphite: 757 Potassium: 824 Fluorine: 900 Aluminium: Kilo-10 3: 1030 Neon: 1230 ...
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
≳100000 [88] in practice, phonon scattering at solid-liquid interface is main barrier to heat transfer. 2.2 Liquid helium in its superfluid state below 2.2 K House: American 2016 Wood Product Blow-in, Attic Insulation 0.0440 − 0.0448 [89] FIBERGLAS Blow-in, Attic Insulation 0.0474 − 0.0531 [90] PINK FIBERGLAS Flexible Insulation 0.0336 ...