Search results
Results from the WOW.Com Content Network
PDE-constrained optimization is a subset of mathematical optimization where at least one of the constraints may be expressed as a partial differential equation. [1] Typical domains where these problems arise include aerodynamics , computational fluid dynamics , image segmentation , and inverse problems . [ 2 ]
Computers are usually used to perform the calculations required. With high-speed supercomputers, better solutions can be achieved and are often required to solve the largest and most complex problems. FEM is a general numerical method for solving partial differential equations in two- or three-space variables (i.e., some boundary value problems).
Nonlinear programming — the most general optimization problem in the usual framework Special cases of nonlinear programming: See Linear programming and Convex optimization above; Geometric programming — problems involving signomials or posynomials Signomial — similar to polynomials, but exponents need not be integers
For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.
In quantum computing, the variational quantum eigensolver (VQE) is a quantum algorithm for quantum chemistry, quantum simulations and optimization problems.It is a hybrid algorithm that uses both classical computers and quantum computers to find the ground state of a given physical system.
As a result, the method of Lagrange multipliers is widely used to solve challenging constrained optimization problems. Further, the method of Lagrange multipliers is generalized by the Karush–Kuhn–Tucker conditions , which can also take into account inequality constraints of the form h ( x ) ≤ c {\displaystyle h(\mathbf {x} )\leq c} for a ...
Quantum annealing is used mainly for problems where the search space is discrete (combinatorial optimization problems) with many local minima; such as finding [1] the ground state of a spin glass or solving the traveling salesman problem. The term "quantum annealing" was first proposed in 1988 by B. Apolloni, N. Cesa Bianchi and D. De Falco as ...
Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...