Search results
Results from the WOW.Com Content Network
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
LCM may refer to: Computing and mathematics. Latent class model, a concept in statistics; Least common multiple, a function of two integers; Living Computer Museum;
Synonyms for GCD include greatest common factor (GCF), highest common factor (HCF), highest common divisor (HCD), and greatest common measure (GCM). The greatest common divisor is often written as gcd( a , b ) or, more simply, as ( a , b ) , [ 3 ] although the latter notation is ambiguous, also used for concepts such as an ideal in the ring of ...
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
The Motorola 6800 microprocessor was the first for which an undocumented assembly mnemonic HCF became widely known. The operation codes (opcodes—the portions of the machine language instructions that specify an operation to be performed) hexadecimal 9D and DD were reported and given the unofficial mnemonic HCF in a December 1977 article by Gerry Wheeler in BYTE magazine on undocumented ...
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
Thinking in Java (ISBN 978-0131872486) is a book about the Java programming language, written by Bruce Eckel and first published in 1998. Prentice Hall published the 4th edition of the work in 2006. The book represents a print version of Eckel’s “Hands-on Java” seminar.
He led the design and implementation of numerous Java platform features, including the Java Collections Framework, the java.math package, and the assert mechanism. [1] He is the author of the programming guide Effective Java (2001), which won the 2001 Jolt Award , [ 2 ] and is a co-author of two other Java books, Java Puzzlers (2005) and Java ...