enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    Since the function cosh x is even, only even exponents for x occur in its Taylor series. The sum of the sinh and cosh series is the infinite series expression of the exponential function . The following series are followed by a description of a subset of their domain of convergence , where the series is convergent and its sum equals the function.

  3. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    Graphs of the inverse hyperbolic functions The hyperbolic functions sinh, cosh, and tanh with respect to a unit hyperbola are analogous to circular functions sin, cos, tan with respect to a unit circle. The argument to the hyperbolic functions is a hyperbolic angle measure.

  4. Cosh - Wikipedia

    en.wikipedia.org/wiki/Cosh

    cosh (mathematical function), hyperbolic cosine, a mathematical function with notation cosh(x)-COSH, a representation of the thiocarboxylic acid functional group in chemistry; Chlorpromazine, an antipsychotic drug; ChromeOS Shell, an operating system designed by Google

  5. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    The geometric mean is an ancient concept, but hyperbolic angle was developed in this configuration by Gregoire de Saint-Vincent. He was attempting to perform quadrature with respect to the rectangular hyperbola y = 1/x. That challenge was a standing open problem since Archimedes performed the quadrature of the parabola.

  6. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    The Poincaré half-plane model is closely related to a model of the hyperbolic plane in the quadrant Q = {(x,y): x > 0, y > 0}. For such a point the geometric mean = and the hyperbolic angle = ⁡ / produce a point (u,v) in the upper half-plane. The hyperbolic metric in the quadrant depends on the Poincaré half-plane metric.

  7. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...

  8. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    Since cosh x + sinh x = e x, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integers n, (⁡ + ⁡) = ⁡ + ⁡. If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x) n. [4]

  9. Rapidity - Wikipedia

    en.wikipedia.org/wiki/Rapidity

    Rapidity is the parameter expressing variability of an event on the hyperbola which represents the future events one time unit away from the origin O. These events can be expressed (sinh w, cosh w) where sinh is the hyperbolic sine and cosh is the hyperbolic cosine.