Search results
Results from the WOW.Com Content Network
Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end. [22] The algorithm will determine if c is a valid Hamiltonian Path in G and if so, accept.
The Identity Correspondence Problem (ICP) asks whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. The problem is undecidable and equivalent to the following Group Problem: is the semigroup generated by a finite set of pairs of words (over a group alphabet) a group. [11]
A complete problem for a given complexity class C and reduction ≤ is a problem P that belongs to C, such that every problem A in C has a reduction A ≤ P. For instance, a problem is NP -complete if it belongs to NP and all problems in NP have polynomial-time many-one reductions to it.
Soft computing is an umbrella term used to describe types of algorithms that produce approximate solutions to unsolvable high-level problems in computer science. Typically, traditional hard-computing algorithms heavily rely on concrete data and mathematical models to produce solutions to problems.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The LCS problem has an optimal substructure: the problem can be broken down into smaller, simpler subproblems, which can, in turn, be broken down into simpler subproblems, and so on, until, finally, the solution becomes trivial.
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers.In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.
In the worst case, the algorithm results in a tour that is much longer than the optimal tour. To be precise, for every constant r there is an instance of the traveling salesman problem such that the length of the tour computed by the nearest neighbour algorithm is greater than r times the length of the optimal tour. Moreover, for each number of ...