enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Transformer architecture is now used in many generative models that contribute to the ongoing AI boom. In language modelling, ELMo (2018) was a bi-directional LSTM that produces contextualized word embeddings, improving upon the line of research from bag of words and word2vec. It was followed by BERT (2018), an encoder-only Transformer model. [35]

  3. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Transformer architecture is now used in many generative models that contribute to the ongoing AI boom. In language modelling, ELMo (2018) was a bi-directional LSTM that produces contextualized word embeddings, improving upon the line of research from bag of words and word2vec. It was followed by BERT (2018), an encoder-only Transformer model. [33]

  4. GPT-1 - Wikipedia

    en.wikipedia.org/wiki/GPT-1

    Generative Pre-trained Transformer 1 (GPT-1) was the first of OpenAI's large language models following Google's invention of the transformer architecture in 2017. [2] In June 2018, OpenAI released a paper entitled "Improving Language Understanding by Generative Pre-Training", [ 3 ] in which they introduced that initial model along with the ...

  5. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5]

  6. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  7. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.

  8. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    Other than language models, Vision MoE [36] is a Transformer model with MoE layers. They demonstrated it by training a model with 15 billion parameters. MoE Transformer has also been applied for diffusion models. [37] A series of large language models from Google used MoE. GShard [38] uses MoE with up to top-2 experts per layer. Specifically ...

  9. Leela Chess Zero - Wikipedia

    en.wikipedia.org/wiki/Leela_Chess_Zero

    Visualization of the transformer model used by Leela Chess Zero. Like AlphaZero, Leela Chess Zero employs neural networks which output both a policy vector, a distribution over subsequent moves used to guide search, and a position evaluation. These neural networks are designed to run on GPU, unlike traditional engines.