Search results
Results from the WOW.Com Content Network
To see this, note that the two constraints x 1 (x 1 − 1) ≤ 0 and x 1 (x 1 − 1) ≥ 0 are equivalent to the constraint x 1 (x 1 − 1) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}. Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained ...
A simple way to see this is to consider the non-convex quadratic constraint x i 2 = x i. This constraint is equivalent to requiring that x i is in {0,1}, that is, x i is a binary integer variable. Therefore, such constraints can be used to model any integer program with binary variables, which is known to be NP-hard.
Quadratically constrained quadratic program; Linear-fractional programming — objective is ratio of linear functions, constraints are linear Fractional programming — objective is ratio of nonlinear functions, constraints are linear; Nonlinear complementarity problem (NCP) — find x such that x ≥ 0, f(x) ≥ 0 and x T f(x) = 0
The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...
The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...
If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used. If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quadratically_constrained_quadratic_programming&oldid=108303839"