Search results
Results from the WOW.Com Content Network
Variable length arithmetic represents numbers as a string of digits of a variable's length limited only by the memory available. Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions.
Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used.
(The term "exception" as used in IEEE 754 is a general term meaning an exceptional condition, which is not necessarily an error, and is a different usage to that typically defined in programming languages such as a C++ or Java, in which an "exception" is an alternative flow of control, closer to what is termed a "trap" in IEEE 754 terminology.)
strictfp is an obsolete and redundant reserved word in the Java programming language. [1] [2] Previously, this keyword was used as a modifier that restricted floating-point calculations to IEEE 754 semantics to ensure portability.
An exception handling mechanism allows the procedure to raise an exception [2] if this precondition is violated, [1] for example if the procedure has been called on an abnormal set of arguments. The exception handling mechanism then handles the exception. [3] The precondition, and the definition of exception, is subjective.
Although reserved as a keyword in Java, goto is not used and has no function. [2] [26] strictfp (added in J2SE 1.2) [4] Although reserved as a keyword in Java, strictfp is obsolete, and no longer has any function. [27] Previously this keyword was used to restrict the precision and rounding of floating point calculations to ensure portability. [8]
Some operations of floating-point arithmetic are invalid, such as taking the square root of a negative number. The act of reaching an invalid result is called a floating-point exception. An exceptional result is represented by a special code called a NaN, for "Not a Number". All NaNs in IEEE 754-1985 have this format: sign = either 0 or 1.
Swift introduced half-precision floating point numbers in Swift 5.3 with the Float16 type. [20] OpenCL also supports half-precision floating point numbers with the half datatype on IEEE 754-2008 half-precision storage format. [21] As of 2024, Rust is currently working on adding a new f16 type for IEEE half-precision 16-bit floats. [22]