enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    The order of differencing can be reversed for the time step (i.e., forward/backward followed by backward/forward). For nonlinear equations, this procedure provides the best results. For linear equations, the MacCormack scheme is equivalent to the Lax–Wendroff method .

  3. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  4. Blasius boundary layer - Wikipedia

    en.wikipedia.org/wiki/Blasius_boundary_layer

    Since the second order inner problem is zero, the corresponding corrections to third order problem is null i.e., the third order outer problem is same as second order outer problem. [7]: 139 The solution for third-order correction does not have an exact expression, but the inner boundary layer expansion is of the form,

  5. False diffusion - Wikipedia

    en.wikipedia.org/wiki/False_diffusion

    It was recognized independently by several investigators [1] [2] that the less expensive but only first order accurate upwind scheme can be employed but that this scheme produces results with false diffusion for multidimensional cases. Many new schemes have been developed to counter false diffusion but a reliable, accurate and economical ...

  6. Hybrid difference scheme - Wikipedia

    en.wikipedia.org/wiki/Hybrid_difference_scheme

    For large Peclet numbers (|Pe| > 2) it uses the Upwind difference scheme, which first order accurate but takes into account the convection of the fluid. As it can be seen in figure 4 that for Pe = 0, it is a linear distribution and for high Pe it takes the upstream value depending on the flow direction.

  7. Burgers' equation - Wikipedia

    en.wikipedia.org/wiki/Burgers'_equation

    Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation [1] occurring in various areas of applied mathematics, such as fluid mechanics, [2] nonlinear acoustics, [3] gas dynamics, and traffic flow. [4]

  8. Upwind differencing scheme for convection - Wikipedia

    en.wikipedia.org/wiki/Upwind_differencing_scheme...

    Lower case denotes the face and upper case denotes node; , , and refer to the "East," "West," and "Central" cell. (again, see Fig. 1 below). Defining variable F as convection mass flux and variable D as diffusion conductance = and =

  9. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    The right side of the convection-diffusion equation, which basically highlights the diffusion terms, can be represented using central difference approximation. To simplify the solution and analysis, linear interpolation can be used logically to compute the cell face values for the left side of this equation, which is nothing but the convective ...