Search results
Results from the WOW.Com Content Network
The theorem is named for the mathematicians Hans Hahn and Stefan Banach, who proved it independently in the late 1920s.The special case of the theorem for the space [,] of continuous functions on an interval was proved earlier (in 1912) by Eduard Helly, [1] and a more general extension theorem, the M. Riesz extension theorem, from which the Hahn–Banach theorem can be derived, was proved in ...
Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators ) whose domain is a Banach space , pointwise boundedness is equivalent to uniform boundedness in operator norm .
In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.
Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space , pointwise boundedness is equivalent to uniform boundedness in operator norm.
Hahn's contributions to mathematics include the Hahn–Banach theorem and (independently of Banach and Steinhaus) the uniform boundedness principle. Other theorems include: the Hahn decomposition theorem; the Hahn embedding theorem; the Hahn–Kolmogorov theorem; the Hahn–Mazurkiewicz theorem; the Vitali–Hahn–Saks theorem.
Closed graph theorem (functional analysis) – Theorems connecting continuity to closure of graphs; Continuous linear operator; Densely defined operator – Function that is defined almost everywhere (mathematics) Hahn–Banach theorem – Theorem on extension of bounded linear functionals
The existence of a shift-invariant, finitely additive probability measure on the group Z also follows easily from the Hahn–Banach theorem this way. Let S be the shift operator on the sequence space ℓ ∞ ( Z ), which is defined by ( Sx ) i = x i +1 for all x ∈ ℓ ∞ ( Z ), and let u ∈ ℓ ∞ ( Z ) be the constant sequence u i = 1 for ...
In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.