Search results
Results from the WOW.Com Content Network
A cellular model is a mathematical model of aspects of a biological cell, for the purposes of in silico research. Developing such models has been a task of systems biology and mathematical biology .
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
The Ising model is a prototypical example, in which each cell can be in either of two states called "up" and "down", making an idealized representation of a magnet. By adjusting the parameters of the model, the proportion of cells being in the same state can be varied, in ways that help explicate how ferromagnets become demagnetized when heated.
This statistics -related article is a stub. You can help Wikipedia by expanding it.
Microsoft Excel is a spreadsheet editor developed by Microsoft for Windows, macOS, Android, iOS and iPadOS.It features calculation or computation capabilities, graphing tools, pivot tables, and a macro programming language called Visual Basic for Applications (VBA).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)
The flow across the cells is determined based on μ(k) and λ(k), two monotonic functions that uniquely define the fundamental diagram as shown in Figure 1. The density of the cells is updated based on the conservation of inflows and outflows. Thus, the flow and density are derived as: Where: and represent density and flow in cell i at time t.