Search results
Results from the WOW.Com Content Network
Historically, the constant μ 0 has had different names. In the 1987 IUPAP Red book, for example, this constant was called the permeability of vacuum. [12] Another, now rather rare and obsolete, term is "magnetic permittivity of vacuum". See, for example, Servant et al. [13] Variations thereof, such as "permeability of free space", remain ...
where μ 0 is the vacuum permeability (see table of physical constants), and (1 + χ v) is the relative permeability of the material. Thus the volume magnetic susceptibility χ v and the magnetic permeability μ are related by the following formula: = (+).
Vacuum: 1 (by definition) Air: 1.000 589 86 ... Toggle the table of contents. Template: Relative permittivity table. 2 languages ...
Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum.
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
The concept of permeability is of importance in determining the flow characteristics of hydrocarbons in oil and gas reservoirs, [4] and of groundwater in aquifers. [5]For a rock to be considered as an exploitable hydrocarbon reservoir without stimulation, its permeability must be greater than approximately 100 md (depending on the nature of the hydrocarbon – gas reservoirs with lower ...
where is the vacuum permeability. Any magnetic field has an associated magnetic pressure contained by the boundary conditions on the field. It is identical to any other physical pressure except that it is carried by the magnetic field rather than (in the case of a gas) by the kinetic energy of gas molecules.
The total energy in the space occupied by the system includes a component arising from the energy of a magnetic field in a vacuum. This component equals U v a c u u m = B e 2 V 2 μ 0 {\displaystyle U_{vacuum}={\frac {B_{e}^{2}V}{2\mu _{0}}}} , where μ 0 {\displaystyle \mu _{0}} is the permeability of free space , and isn't included as a part ...